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Abstract: Hairy roots (HRs) grown in vitro are a powerful platform for plant biotechnological
advances and for the bio-based production of metabolites of interest. In this work, black carrot HRs
able to accumulate anthocyanin as major secondary metabolite were used. Biomass and anthocyanin
accumulation were improved by modulating growth medium composition—different Murashige
& Skoog (MS)-based media—and H2O2-elicitation, and the level of the main antioxidant enzymes
on elicited HRs was measured; (3) Results: higher growth was obtained on liquid 1/2 MS medium
supplemented with 60 g/L sucrose for HRs grown over 20 days. In this medium, 200 µM H2O2

applied on day 12 induced anthocyanin accumulation by 20%. The activity of superoxide dismutase
(SOD)—which generates H2O2 from O2

•−—increased by over 50%, whereas the activity of H2O2-
scavenging enzymes was not enhanced. Elicitation in the HRs can result in a controlled oxidative
burst, in which SOD activity increased H2O2 levels, whereas anthocyanins, as effective reactive
oxygen species scavengers, could be induced to modulate the oxidative burst generated. Moreover,
given the proven stability of the HR lines used and their remarkable productivity, this system appears
as suitable for elucidating the interplay between antioxidant and secondary metabolism.

Keywords: antioxidant metabolism; elicitation; hydrogen peroxide; in vitro culture; superoxide
dismutase; reactive oxygen species (ROS) scavenging

1. Introduction

Infection with the soil-borne pathogenic bacterium Rhizobium rhizogenes (formerly
Agrobacterium rhizogenes) causes the proliferation of “hairy roots” (HRs) on a range of
dicotyledonous plants [1,2]. Upon infection, T-DNA from the so-called root-inducing (Ri)
plasmid, is inserted and integrated in the host plant DNA [1]. The transfer and expression
of four loci from the Ri plasmid, commonly referred as rol-genes, play a key role in devel-
opment of characteristic HRs at the infection site [3,4]. Based on the naturally occurring
R. rhizogenes rol-genes, the initial transformation steps without the use of recombinant
DNA can be termed “natural transformation”, and products derived from this platform
are considered as non-genetically modified organisms [5].

The remarkable advantages of HRs cultures derived from infected plants include:
(1) rapid and high-density growth in hormone-free medium, (2) potentially increased
production of secondary metabolites compared to the starting plant material, (3) genotypic
stability of the derived HR lines, and (4) simple separation of biomass from the nutrient
medium [1,6–9]. Currently, HR-based production of secondary metabolites is a hotspot in
plant biotechnology. Likewise, HRs are a useful platform for gene function studies and
to investigate physiological processes, among other applications [4,10]. In consequence,
over the last three decades, there has been an increasing body of research related to HR
cultures [4].
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Anthocyanins are water-soluble flavonoids that confer colors from red to blue to fruits,
flowers, and vegetables. To date, over 600 different anthocyanins have been identified
from plant sources comprising six common aglycones and various glycosylated and acy-
lated compounds [11,12]. There is increasing demand for natural food colorants that can
substitute synthetic colors due to both legislative actions and consumer concerns. Highly
stable acylated anthocyanins may provide desirable color and stability for commercial food
products [11,13]. Anthocyanins are the major secondary metabolites of black carrot (Daucus
carota L. ssp. sativus var. atrorubens Alef). Some commercial hybrids of black carrots have
been reported to contain anthocyanin contents from 1.5 to 3.5 mg g−1 fresh weight [14–17].
For its high proportion of monoacylated structures with three sugar moieties, black carrot
anthocyanins possess high chemical stability, which makes them adequate substitutes
for synthetic colorants. Today, black carrot extracts are a common ingredient in the food
industry as an alternative to the red azo dye Allura Red (E129) [13,18,19]. In addition, as
potent dietary antioxidants, anthocyanins contribute in the prevention of diabetes, cancer,
neuronal and diseases, among other illnesses [13]. In this context, there is room for new
approaches that increase profitability of pigment production.

Anthocyanins are dual compounds in the sense that are both antioxidants and sec-
ondary metabolites [20]. Secondary metabolite accumulation in HR cultures is often
triggered by elicitors [21–25], which may function as signaling molecules of plant stress
responses. Many elicitor treatments have been linked with reactive oxygen species (ROS)
over-accumulation, especially hydrogen peroxide (H2O2), leading to an oxidative stress
that directly activates secondary metabolite formation [22,26–28]. Plant responses to H2O2
are of great interest due to the role of H2O2 as a signaling molecule, being perceived as an
elicitor that, when added exogenously, may trigger an oxidative stress leading to secondary
metabolites accumulation [29–32]. Plants have an antioxidant defense system composed
of enzymatic and non-enzymatic components [33]. Antioxidant enzymes include catalase
(CAT), peroxidase (POX), superoxide dismutase (SOD) and ascorbate-glutathione (AsA-
GSH) cycle enzymes [33,34]. In this scenario, anthocyanin biosynthesis may take place as a
positive response to oxidative stress due to its non-enzymatic antioxidant capacity of ROS
scavenging [35]. Thus, studying the interplay among elicitation, secondary metabolism
and antioxidant system may shed light to the accumulation of anthocyanins in HRs.

In a recent study, anthocyanin-producing HR cultures of black carrot were reported [25].
In the present work, using two of the most productive HR lines generated in the afore-
mentioned research [25] (lines 43-R and NB-R), the optimization of biomass accumulation
and anthocyanin production was conducted by means of (1) improved composition of
growth medium, followed by (2) an H2O2-elicitation assay in which exogenous H2O2 was
applied at different concentrations. An interplay between H2O2 elicitation and antioxidant
metabolism was found. These findings highlight black carrot HRs as a suitable platform
for the in vitro production of anthocyanins and antioxidants, as well as for the study of the
physiological mechanisms involved in secondary metabolites elicitation.

2. Results and Discussion

The genetic and phenotypic stability of HRs is well reported [10,25,36]. The HR lines
used in this study were obtained over five years ago and, during that time, they were
maintained via regular sub-culturing without detectable loss of vigour and coloration. This
confirms that stable HRs of black carrots have been developed.

Firstly, the growth of HR lines 43-R and NB-R was compared on solid MS-based
medium at different strength and composition: 1/4 MS, 1/2 MS, 1/2 MS containing 60 g/L
sucrose (MS+S), and full MS. The visual aspect of the plates after 1 and 3 weeks is shown
in Figure 1. Overall, higher biomass and pigmentation can be observed for the 43-R line.
Moreover, 1/2 MS+S medium seemed to provide higher yields (Figure 1). These observa-
tions were confirmed by the yield measurements (Figure 2). Concerning the fresh weight
(FW), the levels were higher for 43-R than for NB-R, except in MS medium where FW
was equivalent (Figure 2a). In terms of dry weight (DW), no differences between lines
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for each medium were found (Figure 2b). Therefore, it can be deduced that differences
in FW between HR lines were based on a higher water content of 43-R. This is contrary
to that reported by [25] for the same HR lines, where DW yield was higher for 43-R than
for NB-R, grown under a 12 h light/12 h darkness photoperiod (20 ◦C/18 ◦C). Consid-
ering the different incubation conditions in this study (16 h light, 25 ◦C constant), this
indicates that distinct HR genotypes may respond differently to changes in environmental
conditions [25,37,38]. As for the FW and DW, anthocyanin concentration was lower for
HRs grown on full MS. On the other hand, anthocyanin concentration was higher for both
HR lines grown on 1/2 MS+S, and for NB-R grown on 1/2 MS (Figure 2c). In this sense,
an excess of nutrients could redound negatively on HR growth under our experimental
conditions; this has been reported for HRs and the tissue culture of several species, where
higher nutrient content in the medium either decreased or did not affected biomass accu-
mulation [25,39,40]. Anthocyanin yield, expressed as µg anthocyanin per experimental
unit (plate), can be an adequate reference to high-productive experimental conditions, as it
takes into account both biomass and anthocyanin concentration. In this sense, 1/2 MS+S
medium was pointed out as the one providing the highest yields, followed by 1/4 MS,
1/2 MS and full MS. Comparing HR lines, anthocyanin yield in 43-R was superior for
all media tested except for 1/2 MS (Figure 2d). Again, this is consistent with the results
reported previously [25] in which, under different conditions than the used in this study,
43-R provided higher anthocyanin contents than NB-R. These results led us to select 43-R
line and 1/2 MS+S for elicitation experiments in liquid medium.
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Figure 2. Biomass and anthocyanin production for hairy roots grown on solid Murashige & Skoog (MS)-based media over a
21-day period. The hairy root lines NB-R and 43-R were obtained in a previous research [25]. (a): Fresh weight; (b): Dry
weight; (c): Anthocyanin concentration; (d): Anthocyanin yield. Data are presented as the mean ± SE of six replicates.
Different letters indicate statistical differences according to Tukey’s test (p ≤ 0.05).

H2O2 may accumulate transiently and generate intracellular gradients, which make it
a suitable molecule for signaling roles [41]. In this study, the effect of H2O2 at two concen-
trations (100 or 200 µM) and two application times (days 10 and 12 of culture) was tested
(Figures 3 and 4). Higher H2O2 concentrations (in the mM range) were discarded, since
they were deleterious for HR growth (data not shown). Visually, neither the coloration
nor the size of HRs showed evident variation among the different treatments (Figure 3),
although a clearly more intense coloration was perceived with respect to HRs grown on
plates (Figure 2). The FW was superior for HRs treated with 200 µM H2O2 on day 10
(Figure 4a), whereas the DW was equivalent for all treatments (Figure 4b). In terms of
anthocyanin concentration, a different behavior was observed: HRs treated with 200 µM
H2O2 on day 10 showed the lowest anthocyanin concentration among the treatments,
whereas the highest concentration (1060 µg g−1 FW) was achieved with 200 µM H2O2
applied on day 12. The data for anthocyanin yield highlighted these differences, with
200 µM H2O2 applied on day 12 having ca. 20% higher content than control HRs. This
indicates that H2O2 may have a distinct effect depending on the application time: earlier
addition (day 10) stimulated biomass accumulation while decreased anthocyanin concen-
tration, whereas the same concentration applied on day 12 did not alter biomass while
increased anthocyanin content. This may be related to a better functioning of secondary
metabolism over time, as reported in two-step in vitro production systems [42]. In this
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sense, the elicitation effect of exogenous H2O2 on the secondary metabolism has been
reported in numerous systems [43–45]. On the other hand, culture in liquid medium
provided higher anthocyanin concentrations—an order of magnitude higher—than those
observed on solid media (Figure 2), as reported in [25,46]. Moreover, the anthocyanin con-
centrations achieved are in the range of the observed for some field- and glasshouse-grown
black carrots [14,15,47], which denotes the potential of the HR platform for the in vitro
production of anthocyanins. Finally, anthocyanin yield for the 200 µM H2O2 applied on
day 12 treatment was significantly higher (21.6%) than that of the control.

Subsequently, in order to test the profitability of the proposed methodology, accumu-
lation curves for both biomass and anthocyanin were performed on HRs of 43-R under
control and treatment (200 µM H2O2 applied on day 12) conditions over a 25-day period
(Figure 5). A growth kinetic resembling a sigmoidal curve was observed in both control and
treated HRs (Figure 5a), characterized by an initial lag phase, an intermediate log phase and
a plateau phase at day 20. This shape is equivalent to that previously reported on this HR
line [25] and, overall, on HRs from other species [4,37,46]. Recent kinetic growth models
associated HR biomass accumulation and shape of the curve with complex architecture
relationships that associate the length of individual primary root with the number and
length of higher-order branches [48]. Moreover, there were no significant differences on
the FW between control and treated HRs at any sampling point. In contrast, anthocyanin
concentration was significantly higher in treated HRs at day 20—as was also shown in
Figure 4—as well as at day 25, with increases of around 20% in both cases (Figure 5b).
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Figure 3. Overall appearance of black carrot hairy roots of 43-R line grown in liquid Murashige &
Skoog-based medium (MS+S) over a 20-day period. (a) Control; (b): 100 µM H2O2 added on day 10;
(c) 200 µM H2O2 added on day 10; (d) 100 µM H2O2 added on day 12; (e) 200 µM H2O2 added on
day 12. The hairy root line 43-R was obtained in a previous study [25].
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Figure 4. Biomass and anthocyanin production for hairy roots of 43-R grown in liquid Murashige
& Skoog-based medium (MS+S) over a 20-day period with or without the addition of H2O2 (100 or
200 µM) on days 10 or 12 of culture. The hairy root line 43-R was obtained in a previous research [25].
(a): Fresh weight; (b): Dry weight; (c): Anthocyanin concentration; (d): Anthocyanin yield. Data are
presented as the mean ± SE of six replicates. Different letters indicate statistical differences according
to Tukey’s test (p ≤ 0.05).
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Figure 5. Fresh weight (a) and anthocyanin (b) accumulation curves over a 25-day period for hairy
roots of 43-R grown in liquid Murashige & Skoog-based medium (MS+S) with or without the addition
of 200 µM H2O2 on day 12 of culture. The hairy root line 43-R was obtained in a previous research [25].
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Taking into account that many elicitor treatments leading to enhanced secondary
metabolites production have been linked to the establishment of a moderate oxidative
stress [22,26–28], the activity of the main antioxidant enzymes was determined in 43-R line
for untreated HRs, and for the two treatments that provided the highest and the lowest
anthocyanin concentrations (200 µM H2O2 applied on day 12 and 200 µM H2O2 applied
on day 10, respectively). The elicitation process has been linked to controlled ROS over-
accumulation and oxidative burst in in vitro systems, including HRs, in which antioxidant
enzymes may play a key role [22,26,27,49,50]. For instance, in broccoli cells, enhanced bioac-
tive compound production was achieved by coronatine- and methyl jasmonate-mediated
mild oxidative stress. In these elicited broccoli suspension-cultured cells, the increase in
glucosinolates and phenolic compounds was correlated with higher ascorbate peroxidase
(APX) activity (a H2O2-scavenging enzyme), as well as with lower monodehydroascorbate
reductase (MDHAR) and glutathione reductase (GR) activities, these enzymes being part
of the AsA-GSH pathway [28].

SOD, the first line of defence of the plant for ROS removal, catalyses the dismutation
of the superoxide radical (O2

•−) into O2 and H2O2 [51]. In this study, SOD activity was
enhanced upon H2O2 elicitation in both treatments, displaying day 10 and day 12 35%
and 53% increases, respectively (Figure 6a), which would favour H2O2 accumulation. This
indicates a medium-term rather than a short-term effect, since increased SOD activity
occurred 8 or 10 days after the H2O2 treatment. A similar behaviour was observed in
methyl jasmonate-elicited cell cultures of Pueraria mirifica [52], where increased isoflavonoid
content was associated with enhanced SOD activity (up to 56%) after three and six days
of the treatment. Our results may also indicate the existence of a positive feedback loop
between exogenous H2O2 and cellular H2O2 over-generation by increased SOD activity.
On the other hand, the main H2O2-scavenging enzyme activities (POX and CAT) were
not stimulated upon elicitation: POX activity varied among treatments; whereas H2O2
applied on day 12 did not alter POX levels with respect to the control HRs, the same
treatment on day 10 significantly reduced POX activity (Figure 6b). With respect to CAT
activity, no differences among treatments were found (Figure 6c). The AsA-GSH pathway
play a key role in ROS elimination as well as on AsA and GSH (major non-enzymatic
antioxidants in plants) recycling [33]. In this work, no significant differences were detected
among the enzymes that compose the cycle: APX, MDHAR, GR and dehydroascorbate
reductase (DHAR) levels were invariable under our experimental conditions (Figure 6d–f).
As a result, the hypothetical H2O2 burst on treated samples would not be controlled
enzymatically; instead, anthocyanins, as efficient non-enzymatic antioxidants capable of
directly scavenging ROS [35] could adjust the over-generation of H2O2 in the cell (by SOD
activity) or from exogenous origin (elicitation). In this sense, in Arabidopsis, ROS-induced
anthocyanin production has been reported to provide feedback protection [53,54], whereas
anthocyanin deficiency induced ROS-generating oxidative stress [53].
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Figure 6. Activity of superoxide dismutase (a), peroxidase (b), catalase (c), ascorbate peroxidase (d), monodehydroascorbate
reductase (e), glutathione reductase (f) and dehydroascorbate reductase (g) for hairy roots of 43-R grown in liquid Murashige
& Skoog-based medium (MS+S) over a 20-day period with or without the addition of 200 µM H2O2 on days 10 or 12 of
culture. The hairy root line 43-R was obtained in a previous research [25]. Data are presented as the mean ± SE of five
replicates. Different letters indicate statistical differences according to Tukey’s test (p ≤ 0.05).

3. Conclusions

In the present work, the biomass and anthocyanin accumulation of black carrot hairy
roots were improved by modulating growth medium composition and H2O2-elicitation.
Higher biomass accumulation was achieved on liquid 1/2 MS medium supplemented
with 60 g/L sucrose for HRs grown over 20 days. In this medium, 200 µM H2O2 applied
on day 12 induced anthocyanin accumulation by 20%, whereas its application on day 10
decreased it. This may be related to a better functioning of secondary metabolism over
time. Moreover, stimulated anthocyanin content on elicited HRs was associated with
the establishment of an oxidative burst via enhanced SOD activity—a H2O2-producing
enzyme—whereas the activity of other antioxidants enzymes did not change. This led
us to hypothesize that anthocyanins content may be enhanced in order to cope with this
oxidative burst, acting as direct ROS scavengers in elicited HRs. Given the proven stability
of the HR lines used and their remarkable productivity, this system appears as suitable for
the in vitro study of antioxidant and secondary metabolisms.
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4. Materials and Methods
4.1. Plant Material Maintenance

The plant material used in this research, two HR lines named 43-R and NB-R, were
originated from the R. rhizogenes-mediated transformation of black carrot cultivar ‘Night
Bird’ F1 and inbred line 43, respectively, in a previous study, [25]. Therein, integration
of bacterial DNA in the two lines was verified by the detection of rolB, as reported [25].
The HR lines were maintained via regular sub-culturing every 3 to 4 weeks on solid 1/2
Murashige & Skoog [55] (1/2 MS) medium [0.22% (w/v) MS salts including vitamins, 3%
(w/v) sucrose, and 0.05% MES monohydrate] containing 7.5 g/L agar, on 9-cm diameter
Petri dishes, as reported by [25], and incubated at 25 ◦C in the dark. For each sub-culture,
younger tissue (0.4–0.45 g HR segment) was used.

As a source of inoculum for all experiments, a pre-culture was generated as follows:
0.4–0.45 g HR segments were grown in 250 mL flasks containing 100 mL of 1/2 MS for
1 week in the dark, on an oscillatory shaker (Heidolph™, Fisher Scientific, Hampton, NH,
USA) at 85 rpm.

4.2. Cultivation on Different Solid MS-Based Media

The inoculum (0.3–0.35 g FW of a 1-week pre-culture) of both HR lines was placed onto
15 cm-plastic Petri dishes containing solid MS at different strengths [1/4 MS, 1/2 MS, 1/2
MS containing 60 g/L sucrose (MS+S), and full MS] and incubated at 16 h light (140 µmol
m−2 s−1)/8 h darkness (25 ◦C constant) for three weeks. HRs were collected after 1 and
3 weeks of culture.

4.3. Growth on Liquid 1/2 MS+S Medium and H2O2 Elicitation

Based on the highest growth and anthocyanin yield obtained for R-43 on 1/2 MS+S,
this line and medium were selected for further experiments on liquid medium, where a
0.3–0.35 g FW inoculum from the pre-culture was placed into 250 mL glass Erlenmeyer
flasks containing 100 mL of liquid 1/2 MS+S.

First, an H2O2 stock solution was prepared and added to HR cultures in 1/2 MS+S
medium at days 10 and 12 for final concentrations of 0, 100 and 200 µM. HRs were collected
at day 20. Subsequently, in the light of the higher yields obtained for 200 µM H2O2 added
at day 12, biomass and anthocyanin accumulations were monitored under these conditions
for 25 days, collecting HRs at different times (0, 5, 10, 15, 20 and 25 days).

All flasks were incubated at 16 h light (140 µmol m−2 s−1)/8 h darkness (25 ◦C
constant) on an oscillatory shaker (Heidolph™, Fisher Scientific) at 85 rpm.

4.4. HR Sampling and Processing

In all cases, the whole HR from each plate or flask (biological replicate) was collected,
washed, gently dried, and weighed. Then, HRs were ground in the presence of liquid
nitrogen using a mortar. The resulting powder was stored at −80 ◦C for further analysis.

4.5. Determination of Dry Matter (%) and Anthocyanin Content

A 2-g aliquot of the generated powder was blended in a 3% sulfuric acid solution (1:1,
w/w). The generated homogenate was vigorously mixed with distilled water (1:2, w/w)
and incubated at room temperature for 1 h. Then, the mix was centrifuged for 20 min at
4000 g. The supernatant (extract) was used to measure monomeric anthocyanin content
according to the pH differential method with minor modifications [15]. Briefly, the HR
supernatant was diluted in 0.2 M KCl–HCl pH 1 (1:5, v/v), and the absorption of the mix
was registered between 350 nm and 700 nm using a UV/Vis V-630 Bio spectrophotometer
(Jasco, Tokyo, Japan). Based on a cyanidin-3-glucoside standard, data are expressed as
concentration (µg anthocyanin g−1 FW) and yield (µg anthocyanin per experimental unit
(plate or flask)).
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4.6. Determination of Antioxidant Enzyme Activities

Enzyme extraction was done as described [56–58]. Briefly, a 1-g aliquot of the HR
powder was ground (1:2, w/v) into 50 mM Tris–acetate buffer containing 0.1 mM EDTA,
2 mM cysteine, and 0.2% (v/v) Triton X-100 (pH 6.0). The resulting extract was centrifuged
for 15 min at 10,000× g (HeCttich Mikro 120, Fisher Scientific, Pittsburgh, PA, USA).
Finally, the supernatant was passed through Sephadex G-25 NAP columns (GE Healthcare,
Chicago, IL, USA), and the filtrate used for enzymatic determinations using a UV/Vis V-630
Bio spectrophotometer (Jasco). CAT, POX, SOD, APX, MDHAR, GR and DHAR activities
were assayed according to [59,60]: CAT activity was determined by following the decrease
in absorbance at 240 nm as a result of H2O2 decomposition to water and oxygen. POX
activity was measured by following the oxidation of 4-metoxy-naphtol at 595 nm. SOD
activity was based on the enzymatic system xanthine–xanthine oxidase, measuring the
reduction of cytochrome C at 550 nm. APX activity was calculated following the oxidation
of ascorbate at 290 nm. MDHAR activity was based on the reduction of ascorbate coupled
to the oxidation of NADH followed at 340 nm. GR activity was measured by monitoring
the oxidation of NADPH, reflected as a decrease in absorbance at 340 nm. Finally, DHAR
activity was assayed by measuring the increase in absorbance at 265 nm due to the reduced
ascorbate formation.

4.7. Statistical Analyses

Analyses were performed on five to six biological replicates. All experiments were
conducted independently twice. Data were expressed as the mean ± SE. Normality and
homoscedasticity of variances for all data were checked by a Shapiro and Bartlett tests,
respectively. Data from single time point-experiments were compared using a one-way
analysis of variance (ANOVA) followed by a Tukey HSD post hoc test (p ≤ 0.05), whereas
data from the accumulation curves were analysed by Welch t-test. The R Program for
Statistical Computing (R 3.6.3., R corp.) was used.
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