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Results  During the first set, peak force and power were 
significantly lower in HH than MH and NORM; whereas 
in the second set, mean and peak force and power were sig-
nificantly lower in HH than NORM. At the end of the HRC 
training session, blood lactate and RPE in HH were signifi-
cantly higher than in MH and NORM. SaO2, pH, HCO3

−, 
and pO2 values were significantly lower in all hypoxic con-
ditions than in NORM.
Conclusion  These results indicate that simulated hypoxia 
during HRC exercise reduce blood oxygenation, pH, and 
HCO3

−, and increased blood lactate ultimately decreasing 
muscular performance.

Keywords  Hypoxic · HRC · Lactate · Power · Resistance 
training
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ATP	� Adenosine triphosphate
Ca2+	� Calcium
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cm	� Centimeter
FiO2	� Fraction of inspired oxygen
Glu	� Glucose
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Na+	� Sodium

Abstract 
Purpose  The aim of this study was to analyze the effect 
of hypoxia on metabolic and acid–base balance, blood oxy-
genation, electrolyte, and half-squat performance variables 
during high-resistance circuit (HRC) training.
Methods  Twelve resistance-trained subjects participated 
in this study. After a 6RM testing session, participants per-
formed three randomized trials of HRC: normoxia (NORM: 
FiO2 = 0.21), moderate hypoxia (MH: FiO2 = 0.16), or high 
hypoxia (HH: FiO2 = 0.13), separated by 72 h of recovery 
in normoxic conditions. HRC consisted of two blocks of 
three exercises (Block 1: bench press, deadlift and elbow 
flexion; Block 2: half-squat, triceps extension, and ankle 
extension). Each exercise was performed at 6RM. Rest 
periods lasted for 35 s between exercises, 3 min between 
sets, and 5 min between blocks. Peak and mean force and 
power were determined during half-squat. Metabolic, acid–
base balance, blood oxygenation and electrolyte variables, 
arterial oxygen saturation (SaO2), and rating of perceived 
exertion (RPE) were measured following each block.
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NORM	� Normoxia
pCO2	� Carbon dioxide partial pressure
PCr	� Phosphocreatine
pO2	� Oxygen partial pressure
RM	� Maximum repetition
RPE	� Rating of perceived exertion
RT	� Resistance training
RTH	� Resistance training under hypoxia
s	� Second
SaO2	� Arterial oxygen saturation
SPSS	� Statistical package for the social sciences
W	� Watt

Introduction

Resistance training (RT) is an effective method to modify 
muscle morphology (i.e., increasing muscle mass) and to 
stimulate neuromuscular adaptations to increase strength, 
power, and local muscular endurance, ultimately leading 
to enhanced athletic performance (Garber et al. 2011; Scott 
et al. 2015a). Structural and functional adaptations of skel-
etal muscle can be finely tuned by modifying the exercise 
stimuli, such as training volume, training intensity, and/
or environmental condition (Kon et  al. 2014). Recently, 
some studies (Scott et al. 2015a; Kon et al. 2012; Alvarez-
Herms et al. 2015b) have examined the utility of RT under 
hypoxia (RTH) to enhance muscular performance. For 
instance, strength exercises performed in hypoxic condi-
tions have shown to increase intramuscular metabolic stress 
(FiO2 = 13%) (Kon et al. 2012), enhance hypertrophic sign-
aling and muscle hypertrophy (FiO2 14.4%) (Kon et  al. 
2014), as well as increase the concentration of anabolic 
hormones (Kon et  al. 2012). Furthermore, studies have 
observed that one moderate-load resistance (i.e., 3 sets of 
10 repetitions at 60% of 1RM) and hypoxic training session 
(FiO2 = 16%) can increase muscle activation (Scott et  al. 
2016) but does not affect maximal anaerobic power capac-
ity (Alvarez-Herms et  al. 2015a). In addition, exercising 
in hypoxia is known to induce greater respiratory and car-
diovascular responses and increases sympathetic activation 
(Reeves et al. 1992).

The application of RTH in sports has been shown to 
improve muscle strength (↑ 15% of 3-s maximal volun-
tary contraction; ↑ 18% the area under 30-s force curve), 
muscle size (↑ 6% cross-sectional-area) and muscle endur-
ance (↑ 23% the number of repetitions at 20% 1RM) in 
netball athletes after 5 weeks of training at 20% 1RM and 
at 80% SaO2 (Manimmanakorn et  al. 2013). Nonetheless, 
there are several disadvantages with RT (and consequently 
with RTH) that include: (a) the lengthy time required to 
complete a training session that consists of many exercise 
sets with reasonable inter-set rest durations, (b) moderate 

cardiovascular benefits when compared to other forms of 
training (e.g., aerobic training), and (c) minimal loss of 
body fat after a period of training (Alcaraz et al. 2011).

To address the excess time devoted to RT, a “novel” 
high-intensity resistance circuit training (HRC) was pre-
sented and showed positive effects on muscular hypertro-
phy, strength, and power performance while decreasing fat 
mass, due to the higher total metabolic and cardiovascular 
demand incurred either during the training session or dur-
ing the post-training recovery phase (Alcaraz et  al. 2008, 
2011; Romero-Arenas et al. 2013). Thus, HRC training pro-
duces similar positive effects on physical performance and 
body composition as RT methods but with the advantage 
of a much shorter training session (~30–40 min) (Alcaraz 
et al. 2011). Therefore, the addition of systemic hypoxia to 
HRC is as an interesting strategy to improve athletic per-
formance and further metabolic adaptations using a lower 
exercise volume and shorter session duration when com-
pared to RTH. However, it is still unclear how the level of 
hypoxia can impact one’s ability to perform an HRC train-
ing session. Therefore, in the perspective to develop future 
HRC training programs in hypoxia, the aim of this study 
was to determine if an HRC training session under hypoxia 
produces greater acute effects on physical performance 
than on blood gases, blood metabolites, and blood electro-
lyte responses. Our hypothesis was that an HRC training 
session under high and moderate hypoxic conditions pro-
duces negative acute effects on strength and power, with 
greater blood lactate concentration, and blood electrolytes 
changes compared to normoxia.

Methods

Design

This study used a comparative, double-blind, randomized 
crossover design to test the effect of high and moderate 
hypoxia on metabolic and acid–base balance, blood oxy-
genation, electrolyte, and half-squat performance acute 
responses to a HRC training session. Subjects performed 
a HRC protocol under three conditions of O2 availability, 
each on separate occasions in a random order: (1) nor-
moxia (NORM; fraction of inspired oxygen (FiO2) = 0.21; 
~0  m altitude); (2) moderate hypoxia (MH; FiO2 = 0.16; 
~2.100 m altitude); and (3) high hypoxia (HH; FiO2 = 0.13; 
~3.800  m altitude). During each session (exercise and 
recovery), subjects wore a mask that was connected to a 
hypoxic generator (GO2 Altitude hypoxicator, Biomedtech, 
Australia), which controlled the availability of oxygen. All 
subjects were blinded to the level of FiO2 for each trial. No 
specific familiarization trials were conducted as all partici-
pants had the previous experience with HRC training. All 
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HRC sessions were well tolerated by the subjects, and no 
one reported any side effects.

Subjects

Twelve healthy, nonsmoking, male subjects (age: 25.1 ± 4.8 
years; height: 174.6 ± 5.3  cm; weight: 70.3 ± 6.8  kg; fat 
mass: 12.1 ± 1.8%; bench press 6RM: 57.1 ± 12.8 kg; half-
squat 6RM: 95.9 ± 21.6 kg) participated in this study. The 
subjects were physically active and experienced with resist-
ance training as they performed resistance exercise on aver-
age three times per week in the 4 years prior to the study. 
Subjects did not have any musculoskeletal disorder and 
reported not having been exposed to moderate or high alti-
tude in the 3 months prior to the study. All subjects gave 
signed, informed consent and the study was approved by 
the University’s Institutional Science Ethics Committee.

Procedures

Subjects came to the laboratory a total of four times dur-
ing a 3-week period, each visit was separated by at least 
72  h of recovery under natural conditions (normoxia). In 
the first visit, body composition was assessed using a seg-
mental multifrequency bioimpedance analyzer (Tanita 
BC-601, Tanita Corp., Tokyo, Japan) and the load for each 
subject’s 6 repetition maximum (6-RM) for each of the six 
exercises of the HRC protocol was determined. Three days 
later, subjects performed the HRC protocol under one of 
the environmental conditions. The third and fourth training 
sessions consisted of the same HRC protocol but under the 
remaining experimental conditions. The order of the condi-
tions for each HRC training session was randomized, and 
each subject performed the protocol at the same time of day 
for each visit. In addition, subjects were asked to maintain 
their habitual diet and hydration status and not to ingest 
caffeine or alcohol at least 24 h before each testing session 
nor to perform an exhaustive training bout in the 48 h pre-
ceding each visit.

6RM testing

The 6-RM was used to measure muscle strength in each 
of the following six exercises: bench press, deadlift, 
biceps flexion (preacher curl), half-squat, triceps exten-
sion, and ankle extension (calf raise). Prior to testing, sub-
jects warmed-up on a stationary bicycle for 5 min at 75 W. 
Afterwards, subjects performed ten repetitions at 50% of 
the perceived 1-RM, followed by active stretching. Next, 
standard procedures were used to determine each subject’s 
6-RM loads for each of the exercises (ACSM 2009; Alcaraz 
et al. 2008).

Experimental trials of high‑resistance circuit sessions 
(HRC)

Subjects started with a general warm-up, which involved 
sub-maximal cycling on a stationary bike for 5 min at 75 W 
while maintaining 75–100  rpm. This was followed by 5 
min of active stretching of all major muscle groups. Sub-
jects then performed a specific warm-up, which consisted 
of three sets of three exercises (bench press, deadlift, and 
elbow flexion), using the following sequence: ten repeti-
tions at 50% of 6-RM, 1-min rest, eight repetitions at 75% 
of 6-RM, 2-min rest, and repetitions to failure with a 6-RM 
load. The 6-RM load was adjusted by ±2.5% if a subject 
performed ±1 repetitions or by ±5% if a subject performed 
±2 repetitions (ACSM 2009). Afterwards, subjects rested 
for 3-min prior to starting the HRC session. During the last 
minute of the resting period, subjects were asked to put on 
the mask and start breathing in the hypoxic air.

In each HRC training session, there were two short cir-
cuits (blocks) of three sets, with three different exercises 
in each set. Resting periods were passive and lasted for 
35 s between exercises (which was sufficient time to move 
safely from one exercise to the next), 3-min between sets 
within a block, and 5-min between blocks. Subjects lifted 
loads where only 6 repetitions could be performed (6-RM, 
~85–90% of 1-RM). Block 1 was composed of three sets 
of bench press, deadlift and elbow flexion (preacher curl). 
Block 2 was comprised three sets of half-squat, triceps 
extension (French press), and ankle extension (calf raise). 
Block 1 always proceeded before Block 2 in each HRC 
training session (Fig.  1). To standardize the protocol, the 
eccentric phase of each exercise was performed over 3  s 
(controlled by digital metronome), whereas the concen-
tric phase was performed at maximum velocity (Alcaraz 
et al. 2008, 2011). These single- and multi-joint exercises 
were chosen to work both major and minor muscle groups, 
which were based on ACSM (2009) recommendations. All 
sessions were supervised by an experienced lifter to ensure 

Fig. 1   High-resistance circuit training (HRC) protocol
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that volitional fatigue was achieved safely and rest peri-
ods were strictly controlled. A linear position transducer 
(Chronojump, Barcelona, Spain) was attached to the bar 
and used to measure force and power during each set of 
the half-squat exercise. The half-squat exercise was chosen 
only to measure peak force and power, as it activates higher 
muscle mass than the other exercises and also provides the 
appropriate conditions to position the encoder for accurate 
measurement. The rating of perceived exertion (RPE; 6–20 
scale) was also obtained immediately following each set.

Finally, finger prick blood extractions at rest and at the 
end of each block were performed on the right hand, while 
the subjects stood with their arms flexed. A capillary tube 
of 65  μl was used to collect the blood sample. The fol-
lowing parameters were analyzed to quantify blood gases, 
metabolites, electrolytes, and acid–base status (ABL 90 
Flex, Radiometer, Westlake, USA.): pH, CO2 partial pres-
sure (pCO2; mmHg), O2 partial pressure (pO2; mmHg), 
arterial oxygen saturation (SaO2), bicarbonate (HCO3; 
mmol/l), sodium (Na+; mmol/l), potassium (K+; mmol/l), 
calcium (Ca2+; mg/dl), chloride (Cl; mmol/l), lactate 
(mmol/l), and glucose (Glu; mg/dl) concentrations.

Statistical analysis

The Statistical Package for the Social Sciences (SPSS 
for Windows; v.20.0) was used for all statistical analyses. 
Descriptive statistics (mean ± standard deviation) were cal-
culated. The assumption of normality and homoscedasticity 
was verified using the Shapiro–Wilks W-test prior to using 
the parametric tests. A two-way, repeated-measures analy-
sis of variance (group x time) with Bonferroni post hoc 
analysis was used to investigate differences in variables. 
Statistical significance was set at p ≤ 0.05.

Results

Figure 2 and Table 1 show that peak power in the first set 
of half-squat was lower in HH compared to NORM (−23%) 
and MH (−20%). Similarly, peak force was also reduced in 
HH compared to NORM and MH (both −20%). Moreover, 
lower mean force (−13%) and power (−5%) were observed 
in HH compared to NORM. In the second set of half-squat, 
peak power and peak force were also lower in HH com-
pared to NORM (−23 and −20% respectively). No differ-
ences were observed between NORM and MH in the first 
two sets of half-squat, and no significant differences in 
peak force and power during the final set among the dif-
ferent conditions were observed (Fig.  2). No differences 
in mean force and power during the first and the final sets 
were observed among the different conditions. Regard-
ing the subject´s perceived exertion, higher RPE values 

were observed in HH (Basal: 6.0 ± 0.0; end of block 1: 
14.2 ± 3.1; end of block 2: 13.82 ± 2.5) compared to both 
NORM (Basal: 6.0 ± 0.0; end of block 1: 12.1 ± 1.8; end 
of block 2: 11.6 ± 1.2) and MH (Basal: 6.0 ± 0.0; end of 
block 1: 12.6 ± 2.0; end of block 2: 11.9 ± 1.9) in the last 
block (p ≤ 0.05). No significant differences among the dif-
ferent conditions were observed in RPE at the end of the 
first block.

Table  2 shows the results of blood gases at the end of 
each block of HRC training in the three environmental 
conditions. There were no significant differences in basal 
values of pO2 or in SaO2. However, at the end of the first 
block, lower pO2 and SaO2 were observed in MH (pO2: 
−9%; SaO2: −4%) and HH (pO2: −11%; SaO2: −11%) 
compared to NORM. Similar statistical trends were also 
observed in the second block, with pO2 and SaO2 tend-
ing to be lower in HH compared to NORM (p = 0.057 and 
p = 0.064, respectively). Furthermore, reduced pCO2 was 
shown in HH compared to NORM in the first (−8%) but 
not in the second block.

No differences in acid–base parameters were observed 
in basal conditions (Table 3). At the end of the first block, 
pH was similar among the different conditions, but higher 
blood lactate and reduced blood HCO3

− were observed in 
HH compared to NORM (+37 and −15%, respectively) and 
MH (+32 and −14%, respectively). At the end of the sec-
ond block, blood pH and HCO3

− were lower in HH com-
pared to NORM (−1 and 18%, respectively) and MH (−1 
and −16%, respectively), whereas blood lactate was higher 
compared to NORM (+44%) and MH (+41%).

No differences in blood electrolytes and glucose con-
centration were shown under basal conditions. However, 
Na+ concentration was higher in HH compared to NORM 
in the first (+1%) and second (+2%) blocks. Furthermore, 
Cl− concentration was greater in HH and MH compared 
to NORM in the last block (+2 and +1%, respectively) 
(Table  4). No significant differences in Ca2+, K+, and 
glucose concentrations were observed among the differ-
ent conditions at the end of the first and second blocks 
(Table 4).

Discussion

To our knowledge, this is the first study that investigated 
the effects of moderate and high systemic hypoxia on 
physical performance, blood gases, acid–base balance, and 
blood electrolytes during a HRC training session. The main 
findings show that: (i) high (FiO2 = 0.13) but not moderate 
(FiO2 = 0.16) hypoxia decreased muscular performance in 
the early sets of a HRC training session; (ii) high hypoxia 
significantly reduced blood oxygenation in the first but not 
the second block of the HRC training session; (iii) high but 
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not moderate hypoxia markedly increased blood lactate 
and reduced blood HCO3

− leading to reduced blood pH at 
the end of the HRC training session; and (iv) high hypoxia 
induced minor changes to blood electrolytes and blood glu-
cose responses during a HRC training session.

Effect of hypoxia on the performance of a HRC training 
session

The previous studies have shown that acute exercise per-
formed in hypoxia reduces anaerobic performance (Bro-
snan et  al. 2000; Bowtell et  al. 2014). However, other 
studies have reported no change in peak and mean power 
between varying conditions of oxygen availability in 5 × 5 

repetitions at 80% 1RM, with 3 min of squat and deadlift 
(Scott et  al. 2015a) and 5 × 14 repetitions at 50% 1RM 
with 1 min of rest in bench press and leg press (Kon et al. 
2012). We observed a significant decrease in peak force 
and peak power during the first two sets of the half-squat 
sequence between HH and NORM conditions and a signifi-
cant decrease in mean force and power during the second 
set between HH and NORM. This response is associated 
to exacerbated perturbations of cellular homeostasis in 
active muscles. Higher blood lactate concentrations, lower 
blood pH, and decreased oxygen availability (under HH) 
suggest increased reliance on glycolysis to maintain ATP 
supply, indicating a greater anaerobic energy release with 
acute hypoxia (Scott et al. 2015b). Therefore, when aerobic 
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Fig. 2   Individual and mean of peak force and power during each set of half-squat
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metabolism is not capable of meeting ATP demand, the 
breakdown of phosphocreatine and activation of anaerobic 
glycolysis can be further elevated to meet the short-term 
requirements for ATP (Calbet et al. 2003).

Furthermore, an increase in the rate of PCr hydrolysis 
rate can also occur during hypoxic conditions, resulting 
in an increase in Pi. Moreover, an increase in intracellular 
acidosis due to glycolytic pyruvate production results in 
elevated lactate, which, in turn, can contribute to muscu-
lar fatigue (Bowtell et  al. 2014). Thus, during hypoxia, 
there is increased reliance on non-aerobic metabolism 
to compensate for the limitation in aerobic ATP pro-
duction (Calbet et al. 2003). In addition, limited oxygen 

availability and brief rest intervals affect the muscle’s 
ability to maintain the balance between ATP breakdown 
and ATP production, thereby limiting PCr recovery as 
well as cellular recovery after each exercise bout (Hogan 
et al. 1999). Furthermore, increased activities of cellular 
processes, such as ion pumps, try to achieve homeosta-
sis during rest intervals require ATP, much of which is 
derived from aerobic glycolysis (Colliander et al. 1988). 
Thus, lower muscular performance during HH in the 
first two sets of half-squat exercises is likely due to an 
inadequate supply of ATP from aerobic and non-aerobic 
metabolism to meet the demand, as a consequence of 
limited O2 availability, with ensuing accumulation of 

Table 1   Mean and peak force and power during each set of half-squat of HRC training under three different conditions

Mean ± Standard deviation; NORM = normoxia; MH = 0.16% FiO2; HH = 0.13% FiO2

*Significant differences between normoxia and high hypoxia, $Significant differences between moderate and high hypoxia, *p < 0.05

Peak force (N) Peak power (w)

NORM MH HH NORM MH HH

Set 1 2050.3 ± 396.4* 2040.2 ± 316.3$ 1705.7 ± 669.8 1597.0 ± 561.2* 1544.7 ± 461.1$ 1228.4 ± 603.6
Set 2 2114.0 ± 438.6* 1815.4 ± 682.8 1687.8 ± 845.3 1684.1 ± 561.5* 1387.1 ± 655.9 1298.4 ± 711.6
Set 3 1926.0 ± 713.2 1962.2 ± 717.3 1656.3 ± 882.4 1593.4 ± 680.6 1529.0 ± 629.4 1240.3 ± 726.5

Mean force (N) Mean power (w)

NORM MH HH NORM MH HH

Set 1 1617.9 ± 338.2 1645.43 ± 347.6 1515.3 ± 561.5 751.5 ± 211.9 737.0 ± 220.3 728.0 ± 300.6
Set 2 1625.1 ± 272.0* 1537.4 ± 573.9 1425.6 ± 547.9 625.7 ± 325.2* 599.9 ± 266.6 596.1 ± 328.3
Set 3 1363.6 ± 554.7 1311.7 ± 667.4 1301.9 ± 700.6 721.3 ± 157.0 702.7 ± 266.5 642.1 ± 262.5

Table 2   Blood gases and arterial oxygen saturation (SaO2) values of HRC training under three different conditions

Mean ± Standard deviation; NORM = normoxia; MH = 0.16% FiO2; HH = 0.13% FiO2; pCO2 = carbon dioxide pressure; pO2 = oxygen pressure
*Differences between normoxia and high hypoxia, †Differences between normoxia and moderate hypoxia, $Differences between moderate and 
high hypoxia, *p < 0.05; **p < 0.01; ***p < 0.001; ††p < 0.01; †††p < 0.001; $$p < 0.01

pCO2 (mmHg) pO2 (mmHg) SaO2 (%)

NORM MH HH NORM MH HH NORM MH HH

Basal 39.6 ± 2.5 39.6 ± 2.4 39.1 ± 2.8 78.5 ± 7.9 76.6 ± 11.6 77.5 ± 10.4 98.1 ± 0.2 98.1 ± 0.3 98.2 ± 0.4
Block 1 40.5 ± 3.2** 39.6 ± 3.1 37.4 ± 2.7 75.5 ± 13.3** 68.4 ± 4.7†† 67.0 ± 12.4 94.4 ± 2.9* 91.0 ± 2.4††† 84.1 ± 5.6$$

Block 2 35.3 ± 2.8 34.5 ± 2.8 33.8 ± 4.2 74.2 ± 15.0 70.8 ± 18.7 69.8 ± 11.5 93.8 ± 3.3 92.7 ± 6.0 89.9 ± 6.5

Table 3   Acid–base values of HRC training under three different conditions

Mean (standard deviation); NORM =  normoxia; MH = 0.16% FiO2; HH = 0.13% FiO2; La lactate
*Differences between normoxia and high hypoxia, $Differences between moderate and high hypoxia, *p < 0.05; **p < 0.01; ***p < 0.001

HCO3 (mmol/l) La (mmol/l) pH

NORM MH HH NORM MH HH NORM MH HH

Basal 25.9 ± 1.2 26.0 ± 1.1 26.1 ± 1.3 2.3 ± 0.8 2.0 ± 0.7 2.3 ± 0.9 7.42 ± 0.01 7.41 ± 0.06 7.42 ± 0.02
Block 1 19.0 ± 2.9* 18.9 ± 2.2 16.2 ± 2.6$ 8.7 ± 2.9* 9.0 ± 3.6 11.9 ± 2.1$ 7.33 ± 0.05 7.33 ± 0.04 7.27 ± 0.05
Block 2 19.5 ± 3.5* 19.1 ± 2.7 16.0 ± 2.9$ 8.6 ± 3.5* 8.8 ± 3.3 12.4 ± 2.6$ 7.35 ± 0.06* 7.35 ± 0.05 7.28 ± 0.07$
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metabolic products and ionic imbalances that together 
impair muscle function.

For the third set, peak and mean power and force were 
not different among the different conditions, suggesting 
that during the last set, half-squat performance was not 
only dependent on O2 availability but more affected by the 
accumulation of cellular metabolites (i.e. Pi or H+). The 
imbalance in cellular electrolytes also limits performance 
under hypoxic conditions compared to normoxia. These 
results are in accordance with those obtained recently by 
Scott et al. (2016). They showed an increase in the concen-
tration of metabolic products that promote higher levels of 
muscular fatigue, which induces the activation of additional 
motor units and leads to higher muscle activation during 
hypoxic resistance exercise. Thus, given that metabolic 
acidosis inhibits muscle contractility and subsequently pro-
motes the recruitment of additional high-threshold motor 
units, these results suggest the presence of higher levels of 
lactate under hypoxic conditions of the current study.

As expected, RPE values were significantly higher at 
the end of the HH training session than in MH and NORM 
conditions, suggesting that the HH session was perceived 
as more difficult than MH and NORM. These results are in 
accordance with Alvarez-Herms et  al. (2015b), who have 
shown significant differences in RPE score between high 
hypoxia (FiO2 = 13.5%) and normoxia during a series of six 
consecutive jumps (lasting 15 s with rest periods of 3 min). 
In contrast, Scott et al. (2015a) showed no significant dif-
ferences in RPE scores during a high-intensity resistance 
training session (5 set of 5 repetitions at 80% of 1RM with 
3-min rest between sets) using the same hypoxic levels as 
our study. These conflicting results can be explained by the 
different types of training (traditional vs. high circuit train-
ing) and the slight differences in intensity level (80 vs. 85% 
1RM). Nevertheless, perceived exertion is a useful variable 
to confirm the intensity level of the training protocol, as 
demonstrated by this study.

Effect of hypoxia on blood oxygenation during an HRC 
training session

Oxygenation levels (pO2) was higher in NORM compared 
to MH and HH at the end of the first block. The previ-
ous studies are in accordance with our findings showing 
increased muscle deoxygenation in hypoxic conditions dur-
ing maximal contractions (Richardson et  al. 2006). This 
observation is in line with the known effect of hypoxia on 
the acute ventilatory, cardiac, and vascular responses to 
exercise, all of which contribute to maintain adequate O2 
supply to tissues despite progressive pO2 reduction (Cer-
retelli and Samaja 2003). Nevertheless, the lower pO2 
observed in the exercising muscle cells in hypoxia likely 
acts as a potent signal to trigger specific muscle responses 

to training (Bowtell et al. 2014). Interestingly, a significant 
decline in SaO2 values was observed, which was related 
to the increased hypoxia level at the end of the first block. 
Larger decreases in SaO2 during hypoxia are associated 
with greater anaerobic energy production (Alvarez-Herms 
et al. 2015b; Calbet et al. 2003). The previous studies have 
showed similar findings after anaerobic exercise under 
hypoxia (Scott et  al. 2015a; Alvarez-Herms et  al. 2015b). 
However, in our study, no significant differences in pO2, 
pCO2, and SaO2 were observed in the second block. This 
is in agreement with a recent study by Scott et al., (2016), 
who obtained lower levels of SaO2 in hypoxia than in 
normoxia but no difference in muscle oxygenation status 
between conditions during moderate-load resistance train-
ing (3 sets of 10 repetitions at 60% of 1RM; FiO2 = 16%). 
According to these authors, these findings can be explained 
by the type of resistance exercise applied during the train-
ing session and the level of hypoxia employed (Scott et al. 
2016). Further research to elucidate this point is needed.

Effect of hypoxia on blood acid–base balance 
during a HRC training session

The previous studies showed no significant differences in 
lactate values during an explosive strength session (Alva-
rez-Herms et al. 2015b) under normoxia or hypoxia or after 
30–40 s of supramaximal exercise (McLellan et al. 1990). 
In contrast, our study showed significantly higher blood 
lactate concentrations at the end of the two blocks with HH 
compared to MH and NORM. Our results agree with those 
shown by Calbet et al. (2003) in cyclists using an anaero-
bic test. A reduction in oxygen availability can explain the 
higher lactate levels observed during intense exercise and 
reflect a greater contribution of anaerobic glycolysis to sup-
ply ATP (Calbet et al. 2003).

In addition, acid–base balance is an important limiting 
factor in physical exercise because of its mechanistic role 
in regulating energy metabolism and ion homeostasis (Juel 
2008). During intense muscle activity, an increase in cel-
lular production of lactate and H+ greatly contributes to 
acidosis (Juel 2008). The removal of H+ and lactate via 
monocarboxylate cotransporters (Juel 1998), as well as the 
presence of carbonic anhydrase which affects the rate of H+ 
and HCO3

− transport (Zoll et al. 2006), works together to 
help regulate pH in the muscle. Previously, Buchheit et al. 
(2012) indicated that acute high-intensity interval train-
ing under hypoxia (2400 m of simulated altitude) modifies 
skeletal muscle acid–base balance response via increases 
in H+ fluxes from the muscle to the blood, resulting in a 
decrease in blood pH and HCO3

−. Similarly, we found 
that blood pH was lower in HH compared to NORM and 
MH (−1% in both cases) at the end of the second block. 
Moreover, blood HCO3

− was reduced in HH compared to 
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NORM and MH at the end of the first and second blocks 
(−14 to −18%), indicating that an HRC training session 
under hypoxic conditions produces a higher muscle buffer-
ing response to reduce the pH fluctuations and to maintain 
blood pH near the physiological level (Juel 2008).

Effect of hypoxia on the blood electrolytes response 
to an HRC training session

Intense exercise increases lactic acid and H+ concentra-
tions and induces pronounced perturbations in Na+, K+, 
and Cl− (Sejersted and Sjogaard 2000). These electro-
lyte changes are linked with fatigue and contribute to the 
decrease in muscle force and performance (McKenna et al. 
2008). Similarly, intense fatiguing contractions have been 
shown to induce cellular K+ efflux and Na+ and Cl− influx, 
causing pronounced perturbations in interstitial K+ and 
Na+ concentrations (McKenna et  al. 2008). Furthermore, 
Na+ and Cl− ions can affect muscle function and fatigue 
and can also modulate muscle H+ via the strong differences 
in plasma ion (Cairns et al. 2004). In addition, it has been 
reported that a net Cl influx (from plasma to muscle) occurs 
during intense large muscle mass exercise, indicating that 
Cl− ions are taken up by the muscle (Mckenna et al. 1997). 
In addition, HCO−/Cl− exchange across the erythrocyte 
(RBC) membrane (chloride shift) transport plays a key 
role in maintaining electrical balance across the red cell 
membrane and producing a buffering response of RBC to 
maintain the pH near the physiological level (Böning et al. 
2007). These chloride responses could explain the sig-
nificantly higher blood Cl− concentration observed in this 
study in HH and MH compared to NORM in the last block. 
Therefore, our results show that Cl− ions were altered with 
acute strength training under hypoxia.

Moreover, we observed that blood Na+ concentration 
significantly increased in HH compared to NORM at the 
end of each block. This small elevation in plasma Na+ has 
been observed with exercise (Street et al. 2005), which sug-
gests a higher Na+ release by the contracting muscle caus-
ing an increase in plasma Na+ concentration (Sostaric et al. 
2006) under high hypoxic conditions. Thus, higher blood 
electrolyte concentrations (Cl− in HH and MH vs. NORM 
and Na+ in HH vs. NORM) likely contribute to higher 
fatigue under hypoxic environment. Although the develop-
ment of severe fatigue is multifactorial, ionic interactions 
appear to play an important role in the physiological and 
performance responses to intense exercise (e.g., HRC train-
ing session) (Cairns et al. 2004).

Practical application

This research contributes to the understanding of the acute 
physiological response of HRC training session under 

different levels of hypoxia. It provides evidence for its 
potential applicability to sports that use resistance strength 
training in their training programs. HRC training sessions 
performed in hypoxia do not produce the similar acute 
responses as the same training session performed under 
normoxic conditions.

These differences must be taken into account when 
designing and optimizing the training load for short-term 
adaptations. Therefore, coaches must be careful when 
designing resistance training sessions under high hypoxic 
conditions, as it is more stressful than moderate hypoxia or 
normoxia and can affect the training stimuli or the goal of 
the training session. The subjects of this study were well-
trained athletes, experienced in resistance training. Thus, 
the findings of this study are more applicable to resistance-
trained athletes who aim to enhance strength performance 
than to other populations who remained to be tested. Nev-
ertheless, due to the high response of glycolysis to HH 
training, the results of this study apply to other athletes 
such as team sports players, sprinters, or endurance athletes 
who may want to optimize their strength training sessions 
using shorter duration.

Conclusions

The results of this study showed that HRC performed in 
high, but not moderate hypoxia decreased muscular per-
formance and increased the rating of perceived exertion. 
HRC under high hypoxic conditions also reduced blood 
oxygenation, increased blood lactate, and reduced blood 
HCO3

− and pH. In addition, high hypoxia induced minor 
changes to blood electrolyte and blood glucose responses 
to an HRC training session. Further research is needed to 
examine neural and endocrine responses, as well as the 
morphological and strength adaptations to HRC under 
hypoxic conditions. In addition, more work is needed to 
clarify if this training method can promote hypertrophic, 
metabolic, and strength gains.
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