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Abstract Ant Colony Optimisation (ACO) is an effec-

tive nature-inspired population-based metaheuristic for

the solution of a wide variety of computationally hard

problems. ACO is stochastical and massively parallel to

find a fair solution within a reasonable time frame. In

this work, we provide a parallelization strategy aimed to

leverage these features on heterogeneous and large-scale

massively parallel systems. Our solution finds a good

workload balance via a dynamic assignments of jobs

to heterogeneous resources which perform independent

ant colony executions under different search strategies.

Underused processors may relax their frequency to re-

duce power consumption or increase the depth of search

to contribute to the quality of the results. A coopera-

tive scheduling of jobs optimizes the quality of the solu-

tion and the energy spent by the whole simulation, thus

opening a new path for further developments of ACO

on high-performance contemporary heterogeneous plat-

forms where power savings represent a big concern.

Keywords Heterogeneous Computing · Ant Colony

Optimization · CUDA · power-aware sytems

1 Introduction

We are witnessing the steady transition to heteroge-

neous computing systems[4], with heterogeneity repre-

senting systems where nodes combine traditional mul-

ticore architectures (CPUs) and accelerators (mostly
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Nvidia GPUs [32] or Intel Xeon Phi cards [35]). Het-

erogeneity limits system growing as it can no longer

be addressed in an incremental way. In particular, con-

cepts like scalability, energy barrier, data management,

programmability and reliability become challenges for

tomorrows cyberinfrastructure [6].

Programmers play a fundamental role in this emerg-

ing arena. They have to develop applications to exploit

the best features of each side on a joint execution to

maximize performance and minimize power consump-

tion. And dealing with different hardware components,

instruction sets and programming models, is more than

often a daunting job.

The run-time system is still immature to efficiently

map processors and computations. In the meantime,

the scientific community focuses on the latest break-

throughs in high performance computing together with

specific fields of interest (metaheuristics, image process-

ing, computational modeling, and so on). This results

in a vertical approach enabling remarkable advances

in computer-driven scientific simulations, the so-called

hardware-software co-design [11].

Of particular interest to us are metaheuristic algo-

rithms, especially those inspired by natural processes as

they arise in a wide variety of application domains [37].

Many of these methods (such as genetic algorithm [21],

or particle swarm optimization [26]) are population-based:

they maintain a collection of individual solutions to

evolve as the computation proceeds. Compared to tradi-

tional algorithms like quicksort or matrix inverse, this

class is inherently stochastic, as they use randomiza-

tion search techniques. Their internal structure asks for

parallelisation, and so, abundant parallel versions have

arisen recently [5].

A nature-based method of increasingly popularity is

Ant Colony Optimization (ACO) [14,15,19]. This algo-

rithm, based on foraging behavior observed in colonies



2 Antonio Llanes1 et al.

of real ants, has been applied to a wide variety of prob-

lems, including vehicle routing [41], feature selection

[10] and autonomous robot navigation [20]. The method

generally uses simulated “ants” (i.e., mobile agents),

which first construct tours or paths on a network struc-

ture (corresponding to solutions for a problem), and

then deposit “pheromone” (i.e., signalling chemicals)

according to the quality of the solution generated. The

algorithm takes advantage of emergent properties of the

multi-agent system, where positive feedback (facilitated

by pheromone deposition) quickly drives the population

to high quality solutions.

The original ACO method (called the Ant System

[16]) was developed by Dorigo in the 1990s, and this

version (or slight variants thereof, such as the MAX-

MIN Ant System (MMAS) [40]) is still in regular use

[9,25,27]. Parallel versions of the Ant System have been

developed [12,29,38,42] (see also [33] for a survey), and,

in recent work, we have presented a GPU-based version

of ACO that, for the first time, parallelizes both main

phases of the algorithm (that is, tour construction and

pheromone deposition) [7,8].

The initial version of our ACO algorithm was imple-

mented in CUDA (Compute Unified Device Architec-

ture) 1 based on C language for a convenient access to

the parallel processing capabilities of GPUs (thus facil-

itating so-called “GPGPU” or “general purpose GPU”

computation). CUDA-C targets single GPUs to limit

scalability on grand-challenge applications and/or com-

putationally hard optimization problems. This paper

extends our framework to large-scale supercomputers

enabling MPI and OpenMP in addition to CUDA, also

covering different generations of Nvidia GPUs for a

more complete analysis.

With the advent of CUDA in 2006, up to four differ-

ent generations of GPUs have come out into the market

upgrading compute capabilities: Tesla, Fermi, Kepler

and Maxwell. Our algorithmic design plays with this

scenario to deploy a load-balancing strategy among gen-

erations of Nvidia GPUs for a maximum performance

and minimum power consumption in large-scale ACO-

based solutions. Our experimental study covers a wide

range of computing systems, from consume-market de-

vices to high-end servers.

This paper is organized as follows. Section 2 de-

scribes ACO for TSP, CUDA programming model and

our ACO-based algorithm. Section 3 introduces our par-

allelization techniques to enhance ACO simulation on

GPU-based heterogeneous clusters, which are the main

contribution of this work. Section 4 focuses on the ex-

perimental results, Section 5 analyzes their performance,

and finally, Section 6 draws the conclusions.

1 Details at http://docs.nvidia.com/cuda/index.html

2 Background

2.1 Ant Colony Optimisation for the Traveling

Salesman Problem

The Traveling Salesman Problem (TSP)[28] involves

finding the shortest (or “cheapest”) round-trip route

that visits each of a number of “cities” exactly once.

The symmetric TSP on n cities may be represented as

a complete weighted graph, G, with n nodes, with each

weighted edge, ei,j , representing the inter-city distance

di,j = dj,i between cities i and j. The TSP is a well-

known NP-hard optimisation problem, and is used as a

standard benchmark for many heuristic algorithms [24].

The TSP was the first problem solved by Ant Colony

Optimisation (ACO) [17,13]. This method uses a num-

ber of simulated “ants” (or agents), which perform dis-

tributed search on a graph. Each ant moves through

on the graph until it completes a tour, and then of-

fers this tour as its suggested solution. In order to do

this, each ant may drop “pheromone” on the edges con-

tained in its proposed solution. The amount of phe-

romone dropped, if any, is determined by the quality

of the ant’s solution relative to those obtained by the

other ants. The ants probabilistically choose the next

city to visit, based on heuristic information obtained

from inter-city distances and the net pheromone trail.

Although such heuristic information drives the ants to-

wards an optimal solution, a process of “evaporation”

is also applied in order to prevent the process stalling

in a local minimum.

The Ant System (AS) is an early variant of ACO,

first proposed by Dorigo [13]. The AS algorithm is di-

vided into two main stages: Tour construction and Phe-

romone update. Tour construction is based on m ants

building tours in parallel. Initially, ants are randomly

placed. At each construction step, each ant applies a

probabilistic action choice rule, called the random pro-

portional rule, in order to decide which city to visit next.

The probability for ant k, placed at city i, of visiting

city j is given by the equation 1

pki,j =
[τi,j ]

α
[ηi,j ]

β∑
l∈Nk

i
[τi,l]

α
[ηi,l]

β
, if j ∈ Nk

i , (1)

where ηi,j = 1/di,j is a heuristic value that is avail-

able a priori, α and β are two parameters which deter-

mine the relative influences of the pheromone trail and

the heuristic information respectively, and Nk
i is the

feasible neighbourhood of ant k when at city i. This

latter set represents the set of cities that ant k has not

yet visited; the probability of choosing a city outsideNk
i

is zero (this prevents an ant returning to a city, which is
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not allowed in the TSP). By this probabilistic rule, the

probability of choosing a particular edge (i, j) increases

with the value of the associated pheromone trail τi,j
and of the heuristic information value ηi,j . The numer-

ator of the equation 1 is pretty much the same for ev-

ery ant in a single run, thus, computation times can be

saved by storing this information in additional matrix,

called choice info matrix as showed in [18]. The random

propotional rule ends with a selection procedure, which

is done analogously to the roulette wheel selection pro-

cedure of evolutionary computation (for more detail see

[18], [22]). Each value choice info[current city][j] of a

city j that ant k has not visited yet determines a slice

on a circular roulette wheel, the size of the slice be-

ing proportional to the weight of the associated choice.

Next, the wheel is spun and the city to which the marker

points is chosen as the next city for ant k. Furthermore,

each ant k maintains a memory, Mk, called the tabu list,

which contains the cities already visited, in the order

they were visited. This memory is used to define the

feasible neighbourhood, and also allows an ant to both

to compute the length of the tour T k it generated, and

to retrace the path to deposit pheromone.

After all ants have constructed their tours, the phe-

romone trails are updated. This is achieved by first low-

ering the pheromone value on all edges by a constant

factor, and then adding pheromone on edges that ants

have crossed in their tours. Pheromone evaporation is

implemented by

τi,j ← (1− ρ)τi,j , ∀(i, j) ∈ L, (2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.

After evaporation, all ants deposit pheromone on their

visited edges:

τi,j ← τi,j +

m∑
k=1

∆τki,j , ∀(i, j) ∈ L, (3)

where ∆τij is the amount of pheromone ant k de-

posits. This is defined as follows:

∆τki,j =

{
1/Ck if e(i, j)k belongs to T k

0 otherwise
(4)

where Ck, the length of the tour T k built by the k-th

ant, is computed as the sum of the lengths of the edges

belonging to T k . According to equation 4, the better

an ant’s tour, the more pheromone the edges belonging

to this tour receive. In general, edges that are used by

many ants (and which are part of short tours), receive

more pheromone, and are therefore more likely to be

chosen by ants in future iterations of the algorithm.

2.2 The CUDA programming model

CUDA [31] is a successfull attempt to promote general-

purpose high-performance computing on GPUs, cover-

ing hardware and software paradigms jointly. On the

hardware side, the GPU consists of N multiprocessors

which are replicated within the silicon area, each en-

dowed with M cores sharing the control unit and a

shared memory (small cache explicitly managed by the

programmer). Each GPU generation has increased CUDA

Compute Capabilities (CCC), also growing in number

of cores and shared memory size (see Table 1). At the

same time, power consumption has been reduced by a

factor of 2 on each new generation.

The CUDA software paradigm is based on a hi-

erarchy of abstraction layers: the thread is the basic

execution unit; threads are grouped into blocks, and

blocks are mapped to multiprocessors. C procedures to

be ported to GPUs are transformed into CUDA kernels,

mapped to many-cores in a SIMD (Single Instruction

Multiple Data) fashion, that is, with all threads running

the same code but having different IDs. Programmer

deploys parallelism declaring a grid composed of blocks

equally distributed among all multiprocessors. A kernel

is therefore executed by a grid of thread blocks, where

threads run simultaneously grouped in batches called

warps, which are the scheduling units.

2.3 Our initial CUDA implementation

In a previous work, we have developed a CUDA-based

ACO implementation with an emphasis on data paral-

lelism [7]. We now summarize this algorithm as it is our

departure point for this work.

When an ant makes a decision on which city to

visit next, it must calculate heuristic information which

is the same for all ants. It makes sense to split the

computation of heuristic values into a separate heuris-

tic info kernel, which is then executed prior to tour

construction. Transition probabilities are stored in a

two-dimensional choice matrix, which is used to inform

“roulette wheel” (Monte Carlo) selection by each ant.

In the tour construction kernel, each ant is associ-

ated with a thread block, such that each thread rep-

resents a city (or cities) that the ant may visit. This

avoids the problem of warp divergences, and enhances

data parallelism, as all threads within a block may co-

operate. The degree of parallelism improves by a factor

of 1 : w, where w is the number of CUDA threads per

block.

Finally, the pheromone kernel performs evaporation

and deposition. Evaporation is straightforward, as a sin-

gle thread can independently lower each entry in the
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Table 1 CUDA summary by generation, with Maxwell to increase the number of cores soon.

Hardware generation Tesla Fermi Kepler Maxwell
and starting year 2007 2010 2012 2014
Multiprocessors per die (up to) 30 16 15 16
Cores per multiprocessor 8 32 192 128
Total number of cores (up to) 240 512 2880 2048
Shared memory size (maximum in kilobytes) 16 48 48 64
CUDA Compute Capabilities (CCC) 1.x 2.x 3.x 5.x
Peak single-precision performance (GFLOPS) 672 1178 4290 4980
Performance per watt (approx. and normalized) 1 2 6 12

pheromone matrix by a constant factor. Deposition is

more challenging, since each ant generates its own pri-

vate tour in parallel, and will eventually visit the same

edge as another ant. In order to prevent race condi-

tions, we require the use of CUDA atomic operations

when accessing the pheromone matrix in this stage.

3 Scaling to heterogeneous clusters

Fig. 1 Heterogeneous system based on different Nvidia GPU
generations.

Traditional parallel implementations are not always

efficient on heterogeneous systems. Often inherited from

scalable supercomputers where all nodes in the cluster

have the same compute capabilities, they lack of crite-

ria to distinguish computational devices with asymmet-

ric horsepower and energy consumption. Differences are

not limited to hardware design (CPUs vs. GPUs) but

also within the same generation. For example, the Ke-

pler family (see Table 1) includes Tesla K20, K20X and

K40 models, endowed with 13, 14 and 15 multiproces-

sors, respectively. And K80 even reaches 30 multipro-

cessors split into two chips. Figure 1 shows a hetero-

geneous cluster which, nowadays, may include different

Nvidia GPU generations, even within the same node.

With this scenario in mind, we introduce a heteroge-

neity-aware parallelization of Ant Colony Optimisation

applied to the Travelling Salesman Problem as intro-

duced in Section 2.1. Our departure point is (1) the

CUDA-based implementation of ACO described in Sec-

tion 2.3, and (2) the parallelization strategy proposed

by Stützle [39], where independent instances of the ACO

algorithm are run on different processors (GPUs in our

case, having assorted CUDA Compute Capabilities).

Parallel runs do not incur in communication over-

head, and the final solution is chosen among all inde-

pendent executions, taking advantage of the stochastic

nature of ACO algorithms. The execution time of each

independent execution may differ as it depends on (1)

the underlying GPU each ACO instance runs on, which

is actually unknown at compile-time, and (2) the TSP

instance size (the same in principle for all processors,

but affected by GPU heterogeneity). Given that the

slowest GPU will determine the overall execution time,

our mission is to make use of the idle time granted by

the most powerful GPUs. Performance and energy dif-

ferences shown in the last two rows of Table 1 lead to

believe that there is ample room for improvement here.

We have designed an implementation with three main

focuses: Resources accounting through MPI processes,

performance monitoring via OpenMP threads and power

consumption balance using GPU Boost. We now extend

each of them in subsequent subsections.

3.1 Resources accounting

First, our algorithm defines a MPI thread for each ex-

isting node in the cluster where we run our simula-

tion. Heuristic information about inter-city distances is

sent to each node, where supporting data structures are

also created to avoid communication overhead. Then

each MPI thread creates as many OpenMP threads

as GPUs are available on a node, which is easily at-

tained by querying the GPU properties at runtime (us-
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ing cudaGetDeviceCount from the CUDA API) and

NVML (Nvidia Management Library).

3.2 Performance monitoring

Secondly, a warm-up phase is performed to find out

performance differences among GPUs running the par-

ticular TSP instance to be solved. This phase measures

the execution time of a small number of iterations on

ACO (say five to ten, δ from now on) to detect these

differences and establish the time-budget. δ is a set up

parameter, which should not take much time compared

to the ACO execution itself. The time-budget (TB) cor-

responds to the execution time required to perform that

small number of iterations on the slowest GPU avail-

able. This time-budget is a threshold to finish the ACO

algorithm on every GPU, and it is broadcasted to ev-

ery node using MPI Allreduce. Then, each OpenMP

thread calculates the slot that can use for the simula-

tion (γ, with γ > δ). This slot can be used for a deeper

search (thus computing additional iterations of ACO),

or for reducing the power consumption (relaxing the

clock rate in GPU cores). In addition, when γ ≥ δ/2,

the algorithm can even do a restart to avoid stalling in

a local minimum.

Additional iterations (γ) are obtained by equation 5.

γ = δ ∗ (1/percent); (5)

where percent is the performance difference iden-

tified among GPUs at warm-up stage. For instance,

percent = 0.5 means GPU 2x faster than slowest GPU

in the cluster.

The number of restarts that each GPU may perform

is calculated by equation 6

γ = 1/percent; (6)

as the numerator represents the percent for the slow-

est GPU, which is always set to 1.

Finally, if we want to reduce the overall power con-

sumption of our simulation we have to use GPU BoostTM,

a new hardware feature introduced by Nvidia starting

in the K40 Kepler GPU. GPU Boost manipulates the

clock rate of the GPU cores to trade performance by

energy. The idea is to sacrifice time in favour of power

consumption when the latter is more critical. Develop-

ers can use the nvidia-smi shell command to set up

the frequency in the GPU, usually exceeding/reducing

the nominal value around 20%. To prevent excessive

thermal stress, Nvidia does not allow to change this

parameter at run-time or within an application as In-

tel SpeedStepTMdoes. Moreover, the GPU is required

to work in Persistence Mode, which ensures that driver

stays loaded even when the GPU has not any work to

run on it. The range of clocks supported can be queried

by the nvidia-smi -d SUPPORTED CLOCKS command,

and changed with the -ac option (see [1] for more de-

tails and full list of commands). Clock changes require

superuser privileges, or developers can use the NVIDIA

Management Library (NVML) [3] instead. NVML is

a C-based API for monitoring and managing diverse

states of NVIDIA GPU devices, including clock set-

ting, without requiring the user to run nvidia-smi

prior to launching the application on the GPU. The

real-time power consumption measurement of individ-

ual GPU components using a software approach is only

supported by the Nvidia Kepler architecture GPU. This

is also done by using NVML, which reports the GPU

power usage at real-time. We use nvmlDeviceGetPowerUsage

command to obtain power usage.

4 Experimental setup

4.1 Hardware environment

During our experimental study, we have used the fol-

lowing platforms:

– On the CPU side: Four Intel Xeon X7550 pro-

cessors running at 2 GHz and plugged into a quad-

channel motherboard endowed with 128 Gigabytes

of DDR3 memory.

– On the GPU side: Six GPUs, starting with an

almost 4 years old Tesla S2050 (i.e. four Tesla C2050

with Fermi generation) and ending with a brand

new GeForce GTX 980 (Maxwell generation), with

two Kepler models in between (K20 and K40), all

sharing the motherboard space with PCI-e 3.0 slots

to communicate with CPUs.

Table 2 compiles a detailed descriptions of all these

platforms. Moreover, we use gcc 4.8.2 with the -O3 flag

to compile on the CPU, and the CUDA compiler/driver-

/runtime version 6.5 to compile and run on the GPU.

4.2 Benchmarking

We test our designs using a set of benchmark instances

from the well-known TSPLIB library [36] [2]. All bench-

mark instances are defined on a complete graph, and

all distances are defined to be integer numbers. Table 3

shows a list of all targeted benchmark instances with in-

formation on the number of cities, the type of distance

and the length of optimal tours.
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Table 2 Hardware resources and experimental setup used during our executions.

Vendor and type Intel CPU Nvidia GPUs
Family Haswell Fermi Kepler Kepler Maxwell
Class Xeon Tesla Tesla Tesla GeForce
Model X7550 C2050 K20c K40c GTX 980
Year 2015 2012 2013 2014 2015
Cores per multiprocessor (does not 32 192 192 128

Processing Number of multiprocessors apply) 14 13 15 16
elements Total number of cores 8 448 2496 2880 2048

Clock frequency (MHz) 2000 1147 706 745 1216
Maximum Per multiprocessor (does 1536 2048 2048 2048
number of Per block not 1024 1024 1024 1024
GPU threads Per warp apply) 32 32 32 32
Register file 32-bit registers (per multiprocessor) 32768 65536 65536 65536
SRAM memory Shared (only GPUs) (32 KB L1D 16 or 48 KB 16 or 48 KB 16 or 48 KB 16 or 48 KB
(per multiproc. L1 cache and 48 or 16 KB 48 or 16 KB 48 or 16 KB 48 or 16 KB
on GPUs) (Shared + L1) 32 KB L1I) 64 KB 64 KB 64 KB 64 KB
L2 cache (shared by 256 KB 768 KB 1280 KB 1536 KB 2048 KB
L3 cache all cores) 16 MB (does not apply)

Size (Megabytes) 131072 2687 4800 11520 4096
Speed (MHz) 2x666 2x1546 2x2600 2x3004 2x3505

DRAM Width (bits) 256 384 320 384 256
memory Bandwidth (Gigabytes/sc.) 42.66 148.41 208 288.38 224.32

Technology DDR3 GDDR5 GDDR5 GDDR5 GDDR5
CUDA Compute Capabilities (d.n.a.) 2.0 3.5 3.5 5.2

ACO parameters such as the number of ants (m),

and those values to set up their behaviour, like α, β,

ρ, and so on, are set according with the values rec-

ommended in [18]. In particular, m = n (being n the

number of cities), α = 1, β = 2 and ρ = 0.5.

Table 3 Description of the benchmark instances from
TSPLIB library. (EUC 2D: 2-Dimensional euclidean dis-
tances).

Name Cities Type Best tour length
d198 198 EUC 2D 15780
a280 280 EUC 2D 2579
lin318 318 EUC 2D 42029
pcb442 442 EUC 2D 50778
rat783 783 EUC 2D 8806
pr1002 1002 EUC 2D 259045

5 Experimental results

Given the fact that our techniques establish the ex-

perimental setup dynamically, results shown below are

platform dependent.

5.1 Performance and workload balance

Figure 2 shows performance differences across different

GPU generations when they run several TSP instances.

Results are recorded for 1000 iterations, and averaged

over 10 different runs. The fastest GPU belongs to the

latest generation (Maxwell-based GeForce GTX 980),

outperforming the slowest GPU by up to a 4.2x factor.

This slowest GPU is the Tesla C2050, which determines

the time-budget for the entire execution. Tesla K20c, the

Kepler model, stays in between with up to 1.6x gain

versus Tesla C2050.

Results are measured statically for the sake of show-

ing performance differences in a real scenario. However,

our methodology includes a warm-up stage to calculate

these differences at run-time just for few iterations. In a

previous work [7], more details about performance anal-

ysis can be found, in particular, we reported up to 20x

speed-up factor on average for a Tesla C2050 versus a

single-threaded CPU.

Now, we enhance our parallelization strategy to take

advantage of the time that Kepler and Maxwell GPUs

are idle to improve the quality of the results.

One idea, which we call Deep Search, is to increase

the number of iterations to perform a deeper search

within the same time budget. For instance, GeForce

GTX 980 carries out 4102 iterations, Tesla K20c car-

ries out 1654 iterations, and Tesla C2050 just 1000 iter-

ations (the time-budget established for this simulation).

Another possibility is to include a restart to avoid

stalling in a local minimum. That is only possible if and

only if the performance gap is, at least, twice the slowest

GPU performance. These two goals can be merged to
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Fig. 2 Execution times in milliseconds (msecs.) on different Nvidia GPU generations for several TSP instances. Although we
have used a Tesla s2050 in our experiments, the figure only shows the performance of a single GPU of the S2050 server i.e.
Tesla C2050

create a hybrid approach which we call Deep Search

+ Restart. Driven by this combination, GeForce GTX

980 may perform up to four restarts of 1000 iterations

each (as its percent is 0,24 on pr1002 TSP instance),

whereas Tesla K20c only performs a single phase with

a deeper search involving 1657 iterations (a 0,60 percent

is not enough to complete two restarts).

Figure 3 shows a tour quality comparison among

the sequential run and all parallel strategies for a vari-

ety of benchmarks normalized to the optimal solution.

The first bar represents the sequential code, written

in ANSI C, provided by Stuzle in [18]. This code runs

1000 ACO iterations on a single-threaded CPU. The

second bar is the result quality for our GPU version

on 1000 ACO iterations. Figures show that the quality

obtained for these two versions are relatively similar to

each other. The third bar shows our GPU Deep Search

strategy, and the fourth bar represents Deep Search +

Restart. These two last versions improve results by a

wide margin within the same time-budget, with a small

advantage for Deep Search on average. Note that Deep

Search performs restarts implicitly, as different searches

are executed on different GPUs, whereas Deep Search +

Restarts includes restarts explicitly on the same GPU.

5.2 Power consumption

Figure 4 shows the execution times for our simulation

under different clock settings. Performance gains reflect

up to 1,3x speed-up factor, in line with the 31% incre-

ment in the clock rate (frequency raises from 666 MHz

to 875 MHz).

Figure 5 outlines power consumption in milliwatts

for different clock rates. As expected, power consump-

tion raises with higher clock frequencies.

The overall power budget is correlated to the total

execution time of the application (see Figure 6.a). How-

ever, the 745 MHz clock setting - which is actually set

by default on Nvidia’s driver for the Tesla K40 - is the

most energy efficient.

5.3 Power-aware performance metrics

Researchers have proposed metrics combining perfor-

mance and power measures into a single index. The

most popular in low-power circuit design is in the form

of EDn [34], where E is the energy, D is the circuit

delay, and n is a nonnegative integer. The power-delay

product (PDP), the energy-delay product (EDP) [23]

and the energy-delay-squared product (ED2P) [30] are

all special cases of EDn with n = 0, 1, 2, respectively.

Intuitively, EDn captures the energy usage per op-

eration, with a lower value reflecting that power is more

efficiently translated into the speed of operation. The

parameter n implies that a 1% reduction in circuit delay

is worth paying an n% increase in energy usage; thus,

different n values represent varying degrees of emphasis

on deliverable performance over power consumption.

Figure 6.b shows the Energy Delay Product (EDP)

for our ACO simulation, and Figure 6.c the Energy

Delay Square Product (triple weight on performance).

These couple of metrics prioritize performance over en-

ergy. Figure 4 shows that performance differences among

different clock frequencies are remarkable, to benefit

fastest settings.

6 Conclusions and future work

Manolo: I did not touch this section, but it is

mine until March, 25th.

In this paper we presented a comprehensive perfor-

mance review of different parallelization strategies for

Ant Colony Optimization. We discussed the translation

of our previous algorithm from CUDA to scale to emer-

gent heterogeneous cluster where several Nvidia GPUs
with different compute capabilities are available.

We then performed a performance analysis of three

variants of the ACO algorithm, using the Travelling

Salesman Problem as a benchmark, and focussed on

issues of scalability.

In general, GPUs are superior to CPUs on the high-

end segment: they yield twenty times faster execution

on large problem instances. The GPU-CPU difference

is similar on desktops and laptops, 10-20x in favor of

GPUs. At an early stage of its evolution, the APU offers

a low-cost platform, without powerful computational

units nor swift memory data paths. Our results demon-

strate that these two issues have a severe impact on

performance.

The growth of heterogeneous systems represents a

solid trend in modern systems, and we believe that fu-

ture work on Ant Colony Optimization in this domain

can benefit from the promising insights into scalability

demonstrated by our experimental study.
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Fig. 3 Quality of the results obtained for different TSP Lib instances, normalized to the optimal solution.

Fig. 4 Execution times in milliseconds (msecs.) on a Tesla K40 GPU for several TSP instances using different clock frequencies.

Fig. 5 Power consumption (in milliwatts) measured for the Tesla K40 GPU on different clock frequencies and TSP instances.
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Murcia) under grants 15290/PI/2010 and 18946/JLI/13,

by the Spanish MEC and European Commission FEDER

under grant with reference TEC2012-37945-C02-02 and

TIN2012-31345, by the Nils Coordinated Mobility un-

der grant 012-ABEL-CM-2014A, in part financed by

the European Regional Development Fund (ERDF),

by the UCAM under grant PMAFI/26/12, and by the
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